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ABSTRACT: Fourier transform infrared (FTIR) spectroscopy combined with chemometric multivariate methods was proposed to
discriminate the type (unfermented and fermented) and predict the age of tuocha tea. Transmittance FTIR spectra ranging from 400
to 4000 cm�1 of 80 fermented and 98 unfermented tea samples from Yunnan province of China were measured. Sample preparation
involved finely grinding tea samples and formation of thin KBr disks (under 120 kg/cm2 for 5 min). For data analysis, partial least-
squares (PLS) discriminant analysis (PLSDA) was applied to discriminate unfermented and fermented teas. The sensitivity and
specificity of PLSDA with first-derivative spectra were 93 and 96%, respectively. Multivariate calibration models were developed to
predict the age of fermented and unfermented teas. Different options of data preprocessing and calibration models were
investigated. Whereas linear PLS based on standard normal variate (SNV) spectra was adequate for modeling the age of
unfermented tea samples (RMSEP = 1.47 months), a nonlinear back-propagation-artificial neutral network was required for
calibrating the age of fermented tea (RMSEP = 1.67months with second-derivative spectra). For type discrimination and calibration
of tea age, SNV and derivative preprocessing played an important role in reducing the spectral variations caused by scattering effects
and baseline shifts.
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’ INTRODUCTION

As one of the most popular beverages in the world, tea
(Camellia sinensis L.) has also been regarded as a natural medicine
for over 4000 years (since arguably as early as 2700 BC).1 Tea
gains its popularity because of its pleasurable aroma, taste, and
putative healthy effects.2,3 Tea plants (C. sinensis) are widely
distributed in over 30 countries and play a significant role in their
economies. According to the degree of fermentation, teas can be
generally classified into three major types: unfermented green
teas, partially fermented or semifermented oolong and paochong
teas, and fully fermented black and pu-erh (red) teas.4 According
to morphological and chemical diversities, some authors also
suggest teas should be classified into five principal varieties.5

The quality and chemical composition of teas depend on various
factors, including species, season, ageof the leaves (pluckingposition),
climate, and horticultural conditions (soil, water, minerals, fertilizers,
etc.).6 Numerous papers in the literature have been devoted to
investigations of the chemical compositions of teas influenced by
the above-mentioned factors.7�14 Such studies are crucial for
understanding the biological and pharmaceutical properties of
various teas but usually lack a comprehensive view of chemical
compositions. In traditional sensory analysis, the quality of teas is
evaluated by professional tea tasters.15 Because the process of
training a skilled tea taster may take years and is very expensive,
it would be attractive to evaluate tea quality by some nonhuman
techniques.

As a promising alternative approach to the traditional methods
of chemical and sensory analysis, the combination of spectro-
metry and chemometric methods16,17 has been widely used in
food analysis. The rationale behind such techniques is that chemical
compositions of samples are characterized bymeasuredmultivariate

spectra; useful information concerning tea quality can be ex-
tracted by multivariate calibration and/or pattern recognition
methods. Some advantages of spectrometry analysis include the
following: (1) it requires no or less sample preparation; (2) the
analysis time and cost are largely reduced compared with chemical
analysis, so it is very suitable to analyze batch samples; (3) it is a
nondestructive or noninvasive analysis method and can be used
potentially for online analysis. Among various spectroscopic
methods, near-infrared (NIR) spectroscopy is the most popular
for noninvasive analysis of food products, but recently reported
applications of mid-infrared (MIR) in food analysis have signifi-
cantly increased.17

Tuocha is a compressed brick tea produced in the Yunnan
province of China and consumed in large quantities in Central
Asia, southwestern China, and other areas. It has been used as a
food (mainly in parts of Central Asia and Tibet) and beverage as
well as a folk medicine.18 Tuocha can be blocks of whole or finely
ground black tea, green tea, or postfermented tea leaves that have
been packed in molds and pressed into block form. Whereas
fermented and unfermented tuocha teas have different flavors
and health effects, it is also recognized that the quality increases
with age,19 in contrast to green tea, which is unfermented and
consumed as fresh as possible. Moreover, during the long storage
of brick teas, both fermented and unfermented teas undergo
some complicated chemical changes, so age is an important feature
of the effects and flavors of brick tea.20�26
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This research is aimed to develop a precise and reliable model
to predict the age and type of tuocha by Fourier transform
infrared (FTIR) spectroscopy and chemometrics. Both fermented
and unfermented tuocha samples of known age were collected as
samples for training the prediction model. For data mining, partial
least-squares discriminant analysis (PLSDA)27 was applied to
discriminate different types of tuocha. Linear partial least-squares
regression (PLSR)28 and nonlinear back-propagation-artificial
neural network (BP-ANN)29 were performed to relate the age of
tea samples to the measured FTIR spectra. To remove undesir-
able factors in the raw data, different strategies of data preproces-
sing including smoothing,30 first- and second-order derivatives,30

standard normal variate (SNV),31 and detrend31 were also investi-
gated. For different analytical objectives, given the performances
of different models are similar or have no significant differences,
the models with least complexity and least preprocessing were
sought to ensure the generalization of models.

’MATERIALS AND METHODS

Teas. Eighty fermented and 98 unfermented tuocha samples were
analyzed. The tea samples were obtained from the market branch of
Xiaguan Tuocha Group Co., Ltd. (Dali, Yunnan, China). All of the tea
samples retained integral packaging and the original labels indicating
detailed sample information. By the time of analysis, the age of samples
ranged from 51 to 6 months and from 42 to 3 months for fermented and
unfermented teas, respectively. All of the samples are made of green tea
leaves. The detailed information concerning samples is shown inTable 1.
All of the samples were stored in a cool, dark, and dry area with integral
packaging before spectrometry analysis.
FTIR Spectroscopy. Sample preparation involved finely grinding

tea samples followed by preparation of KBr pellets. Samples were
manually ground into fine particles using an agate pestle and mortar.
Then, 10mg (1:30 w/w) of each powder sample was mixed with 290 mg
(29:30 w/w) of KBr (Sigma Chemical Co., St. Louis, MO). KBr pellets
were prepared by exerting a pressure of 120 kg/cm2 for approximately
5 min in a pellet press (Tuopu Instrument., Tianjin, China). To examine
whether the variation in pellet thickness cause significant interference in
the measured spectra, different pellets were prepared from the same
sample and their FTIR spectra were compared.32 The measured FTIR
spectra were nearly identical to their average spectrum used for analysis.

FTIR spectra were collected using a Nicolet 380 FTIR spectrometer
(Thermo Scientific, Waltham, MA) in the wavelength range of 400�
4000 cm�1. For each pellet, 64 scans were performedwith a resolution of
4 cm�1 at room temperature using OMNIC software. An increase in
scanning time did not significantly improve the signal. The average of the
64 scans was used as a raw spectrum for further data analysis. The scanning
interval was 1.929 cm�1; therefore, each spectrum contained 1868 indivi-
dual points for chemometric analysis.
Preprocessing and Outlier Detection. The performance and

reliability of chemometric analysis depend largely on proper implemen-
tation of data preprocessing when the measured spectra are subject to
significant noises, baselines, and other undesirable factors. Although
various preprocessing methods have been developed, it is well-known
that preprocessing not only can improve certain qualities of the spectra
but also is likely to degrade the data in certain other aspects.33 Considering
the lack of sufficient prior information concerning the measured spectra,
different options were investigated to optimize data pretreatment.

Smoothing was frequently used to remove part of the random noise
present in the signal and enhance the signal-to-noise ratio (SNR). The
algorithm of polynomial fitting by the Savitzky and Golay (S-G) method30

was applied for this purpose because of its popularity and simplicity.
Taking derivatives can enhance spectral differences and remove baseline

and background, so first and second derivatives were also adopted. Because
derivatives tend to decrease the SNR by enhancing noise, the derivative
spectra were computed by S-G algorithms.30 SNV31 was originally
designed to reduce scattering effects in the spectra but was also proved
to be effective in correcting the interference caused by variations in pellet
thickness or optical path. Although the influence of the thickness of
pellets was found to be insignificant in this work, SNV was performed to
reduce the possible variations caused by scattering effects or uneven
mixing of KBr and tea powders. To further reduce the spectral variations
in baseline shifts and curvilinearity caused by powdered or densely packed
samples, detrending with a second-degree polynomial31 was used after
SNV transformation.

To avoid the masking effects in outlier detection, robust principal
component analysis (rPCA)34 was performed to detect outliers in the

Table 1. Analyzed Tea Samples

code brand age (months) classa

1F (4b) Xiaguan tuocha 51 F

2F (5) Canger tuocha 49 F

3F (5) Pu-erh tuocha 46 F

4F (3) Xiaguan Jinchac 44 F

5F (5) Xiaguan tuocha 44 F

6F (4) Yunnan Qizi Bing 40 F

7F (4) Pu-erh tuocha 35 F

8F (3) Xiaguan Jinchac 33 F

9F (5) Xiaguan tuocha 33 F

10F (6) Yunnan Qizi Bing 29 F

11F (4) Pu-erh tuocha 27 F

12F (5) Xiaguan tuocha 23 F

13F (5) Canger tuocha 18 F

14F (4) Yunnan Qizi Bing 14 F

15F (5) Xiaguan Jinchac 14 F

16F (5) Pu-erh tuocha 12 F

17F (4) Yunnan Qizi Bing 8 F

18F (4) Xiaguan tuocha 6 F

1N (6) Canger tuocha 42 N

2N (3) Xiaguan Brickc 42 N

3N (6) Xiaguan tuocha 38 N

4N (7) Xiaguan tuocha 33 N

5N (4) Canger tuocha 32 N

6N (6) Xiaguan tuocha 28 N

7N (4) Xiaguan Jinchac 27 N

8N (4) Xiaguan tuocha 25 N

9N (4) Xiaguan Brickc 24 N

10N (4) Canger tuocha 24 N

11N (6) Xiaguan tuocha 20 N

12N (5) Xiaguan Jinchac 18 N

13N (7) Canger tuocha 18 N

14N (5) Xiaguan tuocha 16 N

15N (5) Xiaguan Jinchac 16 N

16N (5) Xiaguan tuocha 13 N

17N (6) Canger tuocha 8 N

18N (3) Xiaguan Brickc 8 N

19N (4) Xiaguan tuocha 5 N

20N (4) Xiaguan tuocha 3 N
a F, fermented teas; N, unfermented teas. b Sample size of teas of
different batches of the same age. cTeas excluded from model training
used solely for prediction.
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original data set. The algorithm involved the centering by the L1 median,
the stepwise search for orthogonal directions, the use of the Qn estimator,
and the search in the direction of the data points. Because the FTIR
spectral data were high-dimensional (for the raw spectra, p = 1868), the
improved version by Hubert et al.35 was adopted, which was more
numerically stable for high-dimensional data and had a much lower
computational cost. In terms of the computed score distance (SD) and
orthogonal distance (OD), an rPCA diagnosis plot yields a classification
of the samples into four groups: regular data (with small SD and small OD),
good PCA-leverage points (with large SD and small OD), orthogonal
outliers (with small SD and large OD), and bad PCA-leverage points (with
large SD and large OD).
Multivariate Analysis. The Kennard and Stone (K-S) algorithm36

was used to split the measured spectra sets into a training set and test set.
The aim of this algorithm was to select a representative training set in
such a way that the objects are scattered uniformly in the range of
training samples. Because the distributions of fermented and unfermen-
ted teas were not the same, the K-Smethod was performed separately for
the fermented and nonfermented teas. For pattern recognition, the
training sets for fermented and nonfermented teas were combined to
form a new training set. PLSDA was applied to the discrimination of
nonfermented and fermented teas. For discriminant analysis, sensitivity
and specificity were used to evaluate the performance of classification
models,37 which are defined as

sensitivity ¼ TP
TP þ FN

and

specificity ¼ TN
TN þ FP

where TP, FN, TN, and FP denote the numbers of true positives, false
negatives, true negatives, and false positives, respectively.

To model the relationship between tea age and FTIR spectra, linear
PLS and nonlinear BP-ANNwere performed. For a PLSmodel, a crucial
problem is the determination of the number of PLS components or
latent variables. It is well-known that selecting too few latent variables is
insufficient to explain the response variable, whereas models with too
much complexity will include the y-uncorrelated data variances and have
a bad prediction performance. Therefore, the F test method proposed by
Haaland and Thomas38,39 combined with Monte Carlo cross-validation
(MCCV)40 was applied to estimating model complexity. The F test
based onMCCVwas employed as follows. First, random sampling of the
training set was performed with a given percent of left-out samples, and
then a PLS model with a given model complexity was built on the
selected samples to predict the left-out samples. Second, step 1 was
repeated for B (B = 100 in this paper) times, and the pooled predicted
residual sum of squares (PRESS) value was computed. Third, steps 1 and
2 were repeated to obtain the PRESS values for PLS models with
different numbers of PLS components. Finally, the F test of each PRESS
value was performed, and the fewest PLS components with a PRESS
value not significantly larger than the minimum PRESS value were
selected.

A major concern with ANN is that it tends to be overfitted; therefore,
the structure and parameters of BP-ANN should be carefully optimized.
Because a three-layer ANNwith one hidden layer is sufficient to simulate
most nonlinear relationships and because the instability of the network
increases with the growth of hidden layers, a three-layer BP-ANNmodel
was developed. The optimization of BP-ANN parameters is as follows.
First, the input variables were rescaled. The original variables were
transformed such that the input variables ranged from 0 to 1:

xi ¼ 0:8
vi � vmin

i

range ðviÞ þ 0:1

vi is the original value and vi
min the minimum value of the ith predictor

variable. Second, the number of nodes in the hidden layer was determined.
Too few hidden nodes might be inadequate to reflect the complex
relationship between predictor variables and response variables, whereas
too many hidden nodes require more computation time and training
samples and tend to incorporate a great deal of noise and overlapping
information into the model. In this paper, the following experiential rule
was adopted to determine the number of hidden nodes:

h g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p þ No

p

h is the number of hidden nodes, p is the number of input nodes, andNo

is the number of the output nodes (which equals the number of response
variables). With this regulation, the candidate values of h could be tried
one-by-one until the best one was found in terms of the squared error
loss function. Third, a log-sigmoid function was chosen as the transfer
function for the hidden layer because of its desirable nonlinearity and
PURELIN linear transfer function for the output layer due to its stability.
Fourth, the learning rate was adjusted. A high learning rate can speed the
training of ANN and reduce the risk of obtaining a local minimum, but it
is also likely to make the network oscillatory and nonconvergent.
Therefore, the learning rate was in the range of 0.05�0.8 and adjusted
according to the error function. Finally, to reduce the complexity of
BP-ANN, PLS components rather than original variables were used as
input variables. This has some advantages in the case of the “large p,
small n” problem: (1) reducing the size of the network; (2) increasing
the calculation speed; (3) reducing the risk of overfitting; (4) denoising
by omitting some trivial PLS latent variables and maintaining the
stability of the neural network.

Figure 1. Average and standard deviation raw spectra of 80 fermented
tuocha teas.
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’RESULTS AND DISCUSSION

All of the data analyses were performed on Matlab 7.0.1
(Mathworks, Sherborn, MA). The toolbox LIBRA for robust
analysis41 was used to perform rPCA diagnosis.
Spectral Data. The average absorption spectra and standard

deviation spectra of the 80 fermented and 98 unfermented teas
are shown in Figures 1 and 2, respectively. For both types of teas,
the highest absorbance in the average spectrum is around 1.5
absorbance units, well within the linear photometric range of the
instrument detector.42 The spectra had broad absorbance bands
and were contaminated with significant baselines, so explanation
and attribution of bands were very difficult. Standard deviation
spectra reflect the variance contributions of different wavelengths.
By comparison of the standard deviation spectra with the mean
spectra, the spectra of unfermented teas demonstrate a stronger
linear relationship than those of fermented teas. This could be
attributed to the more complex composition changes of fermen-
ted teas.20�23 Although the spectra of unfermented and fermen-
ted teas have similar absorbance bands, the relative intensities
and positions of absorbance are slightly different. In Table 1, a
brand of fermented (Xiaguan Jincha, 11 samples) and two brands
of unfermented teas (Xiaguan Jincha, 14 samples; Xiaguan Brick,
10 samples) were purposely left out to form independent samples
for testing calibration models. Therefore, the above 3 brands
(35 samples in all) were completely excluded from model training.
Outlier detection was performed on the raw spectra by rPCA.

The diagnosis plots are demonstrated in Figure 3. The signifi-
cance level was 0.05, and the number of principal components
(PCs) was evaluated by robust PRESS values. Orthogonal outliers

(with small SD and large OD) and bad PCA-leverage points (with
large SD and large OD) were excluded from discrimination and
calibration models. Because there might be considerable spectral
difference between teas with a large age gap, good PCA-leverage
points (with large SD and small OD) were reserved to maintain
the representativeness of training objects and a wide linear range
of calibration models. Five (four orthogonal outliers and one
bad PCA-leverage point) and six outliers (four orthogonal
outliers and two bad PCA-leverage points) were detected for
fermented and unfermented teas, respectively. The K-S algo-
rithm was then applied to splitting the remaining 64 fermen-
ted and 68 unfermented teas into training and prediction
samples. The training/prediction set contains 48/16 samples
for fermented teas and 51/17 samples for unfermented teas.
Because the left-out samples were considered solely for predic-
tion, the final test sets contained 27 samples for fermented teas
and 41 for unfermented teas. The raw spectra were pretreated
by S-G smoothing, first and second S-G derivatives, SNV, and

Figure 2. Average and standard deviation raw spectra of 98 unfermen-
ted tuocha teas.

Figure 3. Robust PCA outlier diagnosis plots for fermented and
unfermented teas. The red lines segment the samples into four classes:
regular data (small SD, small OD), good PCA-leverage points (large SD,
small OD), orthogonal outliers (small SD, large OD), and bad PCA-
leverage points (large SD, large OD).
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SNV-detrend, and the preprocessed data are demonstrated in
Figures 4 and 5.
Modeling of Age. Although nonlinear models are more

flexible and accurate to model complex nonlinear relationships,
they usually have less stability and generalization ability and tend
to be overfitted. Although preprocessing can improve some
aspects of data and models, because it treats the data with a
presupposed model, it can also bring uncertainty to the predic-
tions of new data. Therefore, the objective of tea age calibration is
to develop models with less model complexity and preprocessing
given the difference in model performances is not significant. For
fermented and unfermented teas, linear PLS models were devel-
oped to relate the FTIR spectra to the age of teas. The number of
PLS components was determined by F test of MCCV. Root
mean squared error of prediction (RMSEP) of the test samples
was used to evaluate the accuracy of calibration models.

The results of different models and preprocessing techniques
are demonstrated in Table 2. The most effective and economic
models for modeling the age of teas in this study are highlighted
in bold. For unfermented teas, PLS models based on SNV
(RMSEP = 1.47) and SNV-detrend spectra (RMSEP = 1.54)
obtained the best predictions for test samples. As seen from
Figure 4 and Table 2, preprocessing by taking derivatives and
SNV can in general reduce the model complexity and enhance
model accuracy by removing the baseline variations and back-
grounds. By examining the differences between the RMSEC and
RMSEP values, SNV and SNV-detrend spectra were more stable
for predicting new samples compared with second-derivative
spectra.
For fermented teas, the best linear PLS models based on SNV-

detrend and second-derivative spectra obtained RMSEP values
of 2.20 and 2.38, respectively. Raw, smoothed, and first-derivative

Figure 4. Smoothed, first-derivative, second-derivative, SNV, and SNV-detrend spectra of 98 unfermented teas.



10466 dx.doi.org/10.1021/jf2026499 |J. Agric. Food Chem. 2011, 59, 10461–10469

Journal of Agricultural and Food Chemistry ARTICLE

spectra achieved inferior calibration accuracy, which is very similar to
the unfermentedmodels. This might be partially attributed to the
baseline variations. It can also be seen from Figures 4 and 5 that
first-derivative spectra still have some baseline variations com-
pared with second derivative. Therefore, nonlinear BP-ANN
models were built on second-derivative, SNV, and SNV-detrend
spectra. Compared with linear PLS models, BP-ANN had better
accuracy. BP-ANN based on second derivative and SNV ob-
tained an RMSEP of 1.67 and 1.95, respectively. To validate the
BP-ANN models, cross-validation and multiple initializations of
input weights were performed. For BP-ANN, PLS components
rather than the original wavelengths were used as input variables,
and the number of input nodes was optimized by cross-valida-
tion. By cross-validation, BP-ANN models were selected to have
a root mean squared error of cross validation (RMSECV) not
significantly larger than the root mean squared error of calibration

(RMSEC). By multiple initializations, the network was retrained
with 200 different initial weights yielding different final weight
settings and, thus, different predictions of the test set. The box
and whisker plot of RMSEP represents the range of the predic-
tion error and stability of prediction. Figure 6 demonstrates the
box and whisker plots of the BP-ANN models based on different
preprocessings, indicating the prediction of BP-ANNmodels was
stable. The advantage of BP-ANN models over linear PLS
models can be explained by fitting the complexity of chemical
composition, as well as the changes during fermentation.23�26

As seen from the number of PLS latent variables, the PLSmodels
for fermented teas had more model complexity in general than
those of unfermented teas, also indicating the greater complexity
of spectra and chemical compositions of fermented teas. Corre-
lation plots between the actual and predicted tea ages are shown
in Figure 7.

Figure 5. Smoothed, first-derivative, second-derivative, SNV, and SNV-detrend spectra of 80 fermented teas.
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Discriminating Fermented and Unfermented. PLSDA was
performed to distinguish fermented teas from unfermented. The
prediction set contained 41 unfermented plus 27 fermented teas.
Sensitivity and specificity of prediction were used to evaluate the
classification performance. The unfermented teas were denoted
“positives” and the fermented teas as “negatives”. With different
data preprocessing, the results of PLSDA models in prediction
are shown in Table 3. In terms of sensitivity and specificity,
preprocessing procedures except smoothing could improve the
classification performance and reduce model complexity. Among
various data preprocessing techniques, first-derivative (sensitivity =
0.93, specificity = 0.96) and SNV-detrend spectra (sensitivity =
0.95, specificity = 0.93) obtained the most significant improvement

on classification power. The results obtained by different pre-
processings demonstrate that when the objective is to classify
fermented and unfermented teas, the spectral variations caused
by scattering and baseline shifts play a more important role than a
lower SNR.
This research showed that FTIR coupled with chemometrics

provided an accurate and practical method to predict the type
and age of tuocha teas. Although we can hardly perform an
exhaustive sampling of all types of tuocha teas, this study built a
good model for type and age authentication of some representa-
tive teas. The results are useful for the quality control and routine
analysis of tuocha in its market branch. In addition, derivative and
SNV were successfully applied to reducing the influence of spectral
variations by removing baseline shifts and scattering effects. The
combination of FTIR and chemometric analysis would provide
an alternative method to the expensive sensory analysis. Reliable
predictions were obtained for a fermented tea and two unfermented

Table 2. Summary of Results for Age Models of Fermented
and Unfermented Teas

type model pretreatment

RMSEC

(months)

RMSEP

(months) LVsa

unfermented PLS raw data 1.75 2.05 7

smoothing 1.64 1.78 8

first derivative 1.69 1.85 7

second derivative 1.60 1.96 5

SNVb 1.29 1.47 6

SNV-detrend 1.38 1.54 5

fermented PLS raw data 2.27 2.48 9

smoothing 2.32 2.47 10

first derivative 2.38 2.55 8

second derivative 2.03 2.38 7

SNV 2.19 2.48 7

SNV-detrend 2.05 2.20 8

BP-ANN second derivative 1.53 1.67 12c

SNV 1.78 1.95 11

SNV-detrend 1.90 2.23 11
a LVs, number of PLS latent variables. bThemost effective and economic
models for modeling the age of teas in this study are highlighted in bold.
cNumber of PLS components as BP-ANN inputs determined by cross-
validation.

Figure 6. Box and whisker plots of RMSEP obtained for 200 different
initial input weights for BP-ANN models with three preprocessing
methods. Each plot indicates the minimum, lower quartile, median,
upper quartile, and maximum of RMSEP.

Figure 7. Correlation plots between the actual and predicted ages of
teas by the most effective models. BP-ANN model for fermented teas
was based on second-derivative spectra, and PLSmodel for unfermented
teas was obtained by SNV spectra.
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teas that were similar to but designedly excluded from the
calibration samples, indicating good generalization performance
of the method. However, caution should be taken when predic-
tions are made for unknown samples of different origins. In such
cases, calibration transfer techniques might be required to reduce
or correct the bias caused by uncalibrated spectral variations.
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